Jun Young Park

E-mail: jpark01@stanford.edu; junyoung0131@gmail.com **Last Update:** Nov. 6, 2023

Homepage Google Scholar Github

EDUCATION

Ph.D. Graduate School of Public Health Sciences
Seoul National University
Biostatistics
 Advisor: Prof. Sungho Won (won1@snu.ac.kr)
Mater Degree Graduate School of Public Health Sciences
Seoul National University
B.S. Sociology / Mathematical Statistics
Seoul National University

WORK EXPERIENCE

Stanford University | *Department of Neurology and Neurological Sciences* Post Doctoral Fellow

Neurozen Inc.

Senior Researcher

- Development of solutions for predicting early biomarkers of Alzheimer's Disease with deep learning
- Main Researches (Products)
 - * Predicting Aβ accumulation using MR imaging and genetics (*NeuroAI* (Clinical Test Phase III approval))
 - * Automating Rey Complex Figure Test scoring using a deep learning-based approach (MemoAI)

DOAI Inc.

Researcher

- Development of Medical AI solutions with deep learning
- Main Researches
 - * Optimizing lead via deep reinforcement learning for drug discovery
 - * Predicting ovarian cancer regions in whole sliding images

Samsung Life Insurance

Staff

- Product Development
- Estimating the occurrence of risk with statistical model and calculating insurance premiums

PUBLICATIONS

Journal Publications

[S6] **Park, J.Y.**, Lee, J. J., Lee, Y., Lee. D., Gim. J., Farrer, L., Lee, K. H.*, Won, S.*, "Machine learning-based quantification for disease uncertainty increases the statistical power of genetic association studies". **Bioinformatics**, 2023. Link.

[S5] Choi. U.[†], **Park, J.Y**[†], Lee, J.J., Choi, K.Y., Won, S., Lee, K. H.^{*} "Predicting mild cognitive impairments from cognitively normal brains using a novel brain age estimation model based on structural magnetic resonance imaging". **Cereb Cortex**, 2023. Link.

[S4] **Park, J.Y.**[†], Seo, E.[†], Yoon, H.-J., Won, S.^{*}, Lee, K. H.^{*} "Automating Rey Complex Figure Test scoring using a deep learning-based approach: A potential large-scale screening tool for cognitive decline". **Alz Res Therapy**, 2023.

Sep. 2020 – Aug. 2023 Seoul, South Korea

Mar. 2017 – Feb. 2020 Seoul, South Korea Mar. 2009 – Feb. 2016 Seoul, South Korea

Nov. 2023 – Present California, USA

Feb. 2020 – Oct. 2023 Seoul, South Korea

Dec. 2018 – Jan. 2020 Gyeonggi, South Korea

Jan. 2016 – Aug. 2017 Seoul, South Korea SCI, IF: 8.823, Link.

[S3] Lee, Y., **Park, J.Y.**, Won, S.*, Lee, K. H.* et al. "Heritability of cognitive abilities and regional brain structures in middle-aged to elderly East Asians". **Cereb Cortex**, 2023.

SCI, IF: 4.027, Link.

[S2] Seo, E.H.[†], Lim, H.J.[†], Park, J.Y., Kim, B.C.*, Lee, K. H.* et al. "Visuospatial memory impairment as a potential neurocognitive marker to predict tau pathology in Alzheimer's continuum". Alz Res Therapy 13, 167, 2021. SCI, IF: 8.823, Link.

[S1] **Park, J.Y.**, Won, S.*, Lee, K. H.* et al. "A missense variant in *SHARPIN* mediates Alzheimer's disease-specific brain damages". **Transl Psychiatry** 11, 590, 2021.

SCI, IF: 7.989, Link.

• Journals under Preparation

[JU3] **Park, J.Y.**, Lee, K. H.*, Won, S.* et al. "Multi-stream deep learning model for predicting mild cognitive impairment using RCFT images".

[JU2] **Park, J.Y.**, Lee, K. H.*, Won, S.* et al. "Genome-wide association studies for Rey Complex Figure Test with longitudinal data".

[JU1] **Park, J.Y.**, Kim, B., Lee, K. H.* "Predicting Amyloid-beta with MR imaging and Genetics for Mild Cognitive Impairment".

RESEARCH EXPERIENCE (SELECTED)

Deep Learning model development for predicting early-stage of AD with RCFT images <i>deep learning, medical images</i>	Dec. 2022 – Oct.2023
 developed multi-stream network deep learning model to predict mild cognitive impa preparing a first-author paper for submission. 	irment.
 Machine Learning model development for predicting brain age with T1-MRI machine learning, medical images developed machine-learning models to predict brain age with MRI features submitted a first-author paper. 	Oct. 2021 – Dec. 2022
 Deep Learning model development for automated RCFT scoring deep learning, medical images developed deep learning model to predict scores for Rey Complex Figure Tests 	May. 2021 – Aug. 2022
 Deep Learning model development for predicting Aβ accumulation deep learning, medical images, genetics developed deep learning model to predict amyloid-beta accumulation using MR images approved Clinical Test Phase III in Ministry of Food and Drug Safety. 	Feb. 2020 – May. 2022 ging and genetics.
 Deep Learning model development for predicting cancer regions with WSI <i>deep learning, medical images</i> developed deep learning model to predict ovarian cancer region with whole sliding in 	Jan. 2019 – Dec. 2019 mages.
 Statistical analysis for GWAS with RCFT GWAS, longidudinal data, medical images conduted GWAS with longitudinal data. preparing a first-author paper for submission. 	Jan. 2023 – present
 Statistical method development for GWAS with T1-MRI data machine learning, GWAS, simulation developed machine-learning models to predict AD with MRI data validated the proposed method with simulation studies submitted a first-author paper. 	Oct. 2019 – Jan. 2023
 Statistical analysis for AD GWAS with T1-MRI GWAS, medical images analyzed MRI and genetic data and conduted genome-wide association studies. 	Mar. 2019 – Aug. 2021

• pulished a first-author paper.

- Biostatistics
- Machine Learning
- Deep Learning
- Genetics
- Medical Imaging
- Alzheimer's Disease

INVITED TALKS

"Effictive application of AI-based biomarkers for prediagnosis of Alzheimer's Disease" Neuroscience Forum on Alzheimer's Disease (NFAD), Neurozen Inc. Jeju, South Korea

Feb. 2022

PATENT

Park, J.Y, Park, J.S. "Apparatus and Method for Predicting Amyloid Beta Deposition". (Korea - Application No. 1024563380000).

Park, J.Y, Lee, G.H, Park, J.S. "Method for Obtaining Score for Neuropsychological Test and Neuropsychological Test Device".

(Korea - Application No. 1024092420000).

Park, J.Y, Lee, G.H, Park, J.S, Seo, E.H. "Device and Method For Predicting Cognitive Impairment Using Spatiotemporal Memory Test and Brain Image Information". (Korea - Application No. 1023830580000).

SKILLS

Programming: Python (Tensorflow, Pytorch, scikit-learn), R, SAS, MySQL Modeling: Machine Learning, Deep Neural Networks, Convolutional Neural Networks, Autoencoder, Reinforcement Learning, Genetic analysis tools Platform: MacOS, Linux, Docker, Kubernetes

REFERENCES

Michael D. Greicius

Professor, Stanford University

- · Postdoc fellow Advisor
- greicius@stanford.edu

Sungho Won

Professor, Seoul National University

- · Ph.D. Advisor
- won1@snu.ac.kr